SMOOTH MANIFOLDS FALL 2023 - HOMEWORK 9

SOLUTIONS

Problem 1. Show that if M_{i} are compact, connected, oriented manifolds of the same dimension for $i=1,2,3$, and $f: M_{1} \rightarrow M_{2}$ and $g: M_{2} \rightarrow M_{3}$ are C^{∞} functions, then $\operatorname{deg}(g \circ f)=\operatorname{deg}(g) \operatorname{deg}(f)$.
Solution 1. Notice that the set of regular values of g and $g \circ f$ are both full measure subsets of M_{3}. Therefore, we may choose a point $y \in M_{3}$ such that y is a regular value of both $g \circ f$ and g. We claim that any $x \in g^{-1}(y)$ is also a regular value of f. Indeed, if $p \in f^{-1}(x)$, then $p \in(g \circ f)^{-1}(y)$. Since $d(g \circ f)(p)=d g(x) \circ d f(p)$, and both $d(g \circ f)(p)$ and $d g(x)$ are invertible linear transfomrations (by the regularity assumption for y with respect to g and $g \circ f$, respectively), it follows that $d f(p)$ must be invertible. Then

$$
\begin{aligned}
\operatorname{deg}(g \circ f) & =\sum_{p \in(g \circ f)^{-1}(y)} \sigma(d(g \circ f)(p)) \\
& =\sum_{p \in(g \circ f)^{-1}(y)} \sigma(d g(f(p)) \sigma(d f(p)) \\
& =\sum_{x \in g^{-1}(y)} \sum_{p \in f^{-1}(x)} \sigma(d g(x)) \sigma(d f(p)) \\
& =\sum_{x \in g^{-1}(y)} \sigma(d g(x)) \sum_{p \in f^{-1}(x)} \sigma(d f(p)) \\
& =\sum_{x \in g^{-1}(y)} \sigma(d g(x)) \operatorname{deg}(f)=\operatorname{deg}(g) \operatorname{deg}(f)
\end{aligned}
$$

Solution 2. Fix a top form ω on M_{3} such that $\int_{M_{3}} \omega=1$. Then if $g^{*} \omega$ is a nonexact form on M_{2} :

$$
\operatorname{deg}(g \circ f)=\int_{M_{1}}(g \circ f)^{*} \omega=\int_{M_{1}} f^{*} g^{*} \omega=\operatorname{deg}(f) \int_{M_{2}} g^{*} \omega=\operatorname{deg}(f) \operatorname{deg}(g) \int_{M_{3}} \omega=\operatorname{deg}(f) \operatorname{deg}(g)
$$

On the other hand, if $g^{*} \omega$ is exact on M_{2}, then $\operatorname{deg}(g)=0$ and $f^{*} g^{*} \omega$ is also exact. It follows that both sides of the equality are zero, and it holds in general.

Problem 2. Show that if M and N are compact, connected and oriented manifolds of the same dimension, and $F: M \rightarrow N$ has $\operatorname{deg}(F)=0$, then F has a critical point.
Solution. We prove the contrapositive. Assume that F has no critical point. Then $d F(x)$ is always non-degenerate, and $\sigma(d F(x))$ is locally constant for $x \in M$. Since M is connected, $\sigma(d F(x))$ is either always 1 or always -1 . Hence any $y \in F(M) \subset N$ is a regular value and

$$
\operatorname{deg}(F)=\sum_{x \in F^{-1}(y)} \sigma(d F(x))= \pm \# F^{-1}(y)
$$

Hence, $\operatorname{deg}(F) \neq 0$.

Problem 3. Let A be an $n \times n$ square matrix with integer entries, $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ and $F_{A}: \mathbb{T}^{n} \rightarrow \mathbb{T}^{n}$ be defined by

$$
F_{A}([x])=[A x]
$$

where the notation $[x]$ denotes the equivalence class $x+\mathbb{Z}^{n}$.
(1) Show that F_{A} is well-defined.
(2) Compute $\operatorname{deg}\left(F_{A}\right)$ by computing the signed number of preimages of a regular value of F_{A}.
(3) Compute $\operatorname{deg}\left(F_{A}\right)$ by computing $\int F_{A}^{*} \omega$, where ω is the standard n-form $d x_{1} \wedge \cdots \wedge d x_{n}$.

Solution.
(1) Assume that $x, y \in[x]$, so $y=x+q$ for $q \in \mathbb{Z}^{n}$. Then $A y=A(x+q)=A x+A q$. Since $q \in \mathbb{Z}^{n}$ and A has integer entries, $A q \in \mathbb{Z}^{n}$. Hence $[A y]=[A x]$, and A is well-defined.
(2) We claim that $\operatorname{deg}\left(F_{A}\right)=\operatorname{det}(A)$. First, we handle the case when $\operatorname{det}(A)=0$. In this case, A has a kernel, so the image of F_{A} is an immersed manifold of smaller dimension. In particular, F_{A} cannot be onto, and there exists a regular value with no preimage. Hence $\operatorname{deg}\left(F_{A}\right)=0$ as well.

Otherwise, $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is onto, so F_{A} is onto. Furthermore, identifying all tangent spaces with \mathbb{R}^{n}. we see that $d F_{A}(x)=A$ for all $x \in \mathbb{T}^{n}$, so every value is regular and the sign is either always positive or always negative. It therefore suffices to show that the number of preimages of 0 is $|\operatorname{det}(A)|$.

Observe that $F_{A}(x)=0$ if and only if $A x \in \mathbb{Z}^{n}$, which is to say that $x \in A^{-1} \mathbb{Z}^{n}$. The number of preimages modulo \mathbb{Z}^{n} is hence the index of \mathbb{Z}^{n} inside $A^{-1} \mathbb{Z}^{n}$. That is, the index of $A \mathbb{Z}^{n}$ inside \mathbb{Z}^{n}. We claim that this is $|\operatorname{det}(A)|$. First, note that if $\psi(A)$ denotes the index of $A \mathbb{Z}^{n}$ inside \mathbb{Z}^{n}, then $\psi(A B)=\psi(A) \psi(B)$ and $\psi(\mathrm{Id})=1$. Furthermore, we know that $\psi\left(\operatorname{diag}\left(k_{1}, \ldots, k_{n}\right)\right)=k_{1} \ldots k_{n}$ by direct calculation (the same is true for an upper triangular matrix). Indeed, one may immediately see that the quotient group here is isomorphic to $\mathbb{Z} /\left(k_{1} \mathbb{Z}\right) \times \cdots \times \mathbb{Z} /\left(k_{n} \mathbb{Z}\right)$. Furthermore, if $E=E\left(i_{0}, j_{0}\right)$ is an elementary matrix, which has entries $E_{i j}=1$ if and only if $i=j$ or $i=i_{0}$ and $j=j_{0}, \psi(E)=1$. Finally, all permuatation matrices clearly have $\psi=1$. Since every matrix is a product of upper triangular matrices, permutation matrices, and elementary matrices (Gaussian elimination for \mathbb{Z}^{n} matrices), and ψ coincides with the (absolute value of the) determinant on such matrices, $\psi=|\operatorname{det}|$.

Remark 1. In class, I mentioned that one may use Cramer's rule and adjugate matrices to prove this. When I wrote this problem, this was the solution I had in mind, but I had forgotten it only works for $\operatorname{deg}= \pm 1$. I apologize for any confusion!
(3) Notice that $\int_{\mathbb{T}^{n}}=1$, since a fundamental domain of the action of \mathbb{Z}^{n} is $[0,1]^{n}$, which has n-dimensional volume 1. Furthermore,

$$
F_{A}^{*} \omega(x)\left(e_{1}, \ldots, e_{n}\right)=\omega\left(F_{A}(x)\right)\left(d F_{A}\left(e_{1}\right), \ldots, d F_{A}\left(e_{n}\right)\right)=\operatorname{det}\left(A e_{1}, \ldots, A e_{n}\right)=\operatorname{det}(A)
$$

Hence $F_{A}^{*} \omega=\operatorname{det}(A) \omega$, and it follows that $\int_{\mathbb{T}^{n}} F_{A}^{*} \omega=\operatorname{det}(A)$.

